

Parasect

[image: PyPI] [https://pypi.org/project/parasect/] [image: Status] [https://pypi.org/project/parasect/] [image: Python Version] [https://pypi.org/project/parasect] [image: License] [https://opensource.org/licenses/MIT]

[image: Read the documentation at https://parasect.readthedocs.io/] [image: Tests] [https://github.com/AvyFly/parasect/actions?workflow=Tests] [image: Codecov] [https://codecov.io/gh/AvyFly/parasect]

[image: pre-commit] [https://github.com/pre-commit/pre-commit] [image: Black] [https://github.com/psf/black]

Welcome to Parasect, a utility for manipulating parameter sets for autopilots!

Features

Parasect has two-fold capabilities:

	Compare two parameter sets and highlighting their differences.

	Parsing from user-defined content and generating new parameter sets, ready for loading into an autopilot.

List of currently supported autopilots:

	Ardupilot [https://ardupilot.org/]

	PX4 [https://px4.io/]

Requirements

Parasect is a pure-Python project. Its requirements are managed by the Poetry [https://python-poetry.org/] dependency manager.
When you install Parasect via pip [https://pip.pypa.io/] its requirements will also be installed automatically.

Currently Parasect has been tested:

	in Continuous Integration servers for Ubuntu Linux, Windows

	manually in Ubuntu Linux.

Installation

You can install Parasect via pip [https://pip.pypa.io/] from PyPI [https://pypi.org/]:

$ pip install parasect

If you don’t care about using Parasect as a library and are only interested in
command-line use, you can also use pipx [https://github.com/pypa/pipx], that provides better isolation from
the rest of the system:

$ pipx install parasect

Usage

Parasect is primarily used as a command-line program.
In its simplest form, two parameter files can be compared via:

$ parasect compare <FILE_1> <FILE_2>

The usage for building parameter sets is more involved.
Please see the Command-line Reference [https://parasect.readthedocs.io/en/latest/reference.html#cli-reference] for details.

Additionally, it exposes a minimal API, enabling automated operations.
This is described in the API Reference [https://parasect.readthedocs.io/en/latest/reference.html#api-reference].

It is strongly recommended that you read the Concepts [https://parasect.readthedocs.io/en/latest/concepts.html] that Parasect employs, if you plan to make full use of it.

Contributing

Contributions are very welcome.
To learn more, see the Contributor Guide.

License

Distributed under the terms of the MIT license [https://opensource.org/licenses/MIT],
Parasect is free and open source software.

Issues

If you encounter any problems,
please file an issue [https://github.com/AvyFly/parasect/issues] along with a detailed description.

Credits

This project was sponsored by Avy B.V. [https://avy.eu], a UAV company in Amsterdam.

This project was generated from @cjolowicz [https://github.com/cjolowicz]’s Hypermodern Python Cookiecutter [https://github.com/cjolowicz/cookiecutter-hypermodern-python] template.

The project logo was created by Cynthia de Vries [https://www.linkedin.com/in/cynthia-de-vries-497991231/].

Usage

See also

A full reference of the CLI and the API is available here.

CLI Usage

The primary way of using Parasect is as a command-line tool.
It provides two functions, compare and build.

It is strongly recommended that you first read the Concepts that Parasect employs, if you plan to make full use of it.
A long-form tutorial in using compare and build with the Ardupilot
ecosystem can be found here.

Compare

At its most basic, a comparison between two parameter files can be invoked by:

parasect compare <FILE_1> <FILE_2>

A comparison table will be printed.
Following the MAVLink [https://mavlink.io/en/] conventions, all parameters are assumed to fall under a Vehicle ID and a Component ID.

Example:

❯ parasect compare 6fcfa754-186b-41ae-90a4-8de386f712c3.params 607f3c36-a9f8-428e-bc16-2c2615b84291.params
File comparison : 6fcfa754-186b-41ae-90a4-8de386f712c3.params | 607f3c36-a9f8-428e-bc16-2c2615b84291.params
==
--
Component 1-1:
--
ASPD_SCALE : X < 1
BAT1_A_PER_V : 36.4 | 34
BAT1_CAPACITY : 4000 | 10000
BAT1_V_DIV : 18.2 | 19.7
BAT1_V_EMPTY : 3.5 | 3.55
[...]

	Parameters whose values are different in each file are printed in one line each.

	Parameters that don’t exist in one of the two files will be marked with an X

	Parameters that have practically the same value in both files are not shown.

Typically it is not desirable to show the differences in calibration or operation-specific parameters.
compare offers additional flags to filter out such parameters.

First create your Meals Menu, filling in at least your calibration and operator Dishes.
Then learn how to point Parasect to it.
Finally, you can filter out the calibration parameters by

parasect compare -s <FILE_1> <FILE_2>

or filter out the operator parameters by

parasect compare -u <FILE_1> <FILE_2>

The two flags can be combined.

Build

Parasect can generate parameter sets for your autopilot or fleet of autopilots.

First create your Meals Menu.
Then, you can generate the parameter sets for all your vehicles with a call similar to:

parasect build -o <output_folder> -f <output_format> -i <meals_menu_folder> -d <path_to_default_parameters_file>

Here is a partial output of our example Meal Menu [https://github.com/AvyFly/parasect/tree/master/tests/assets/generic/menu], on .csv format:

Parameter file exported by Parasect.
Parameter name, Parameter value
BAGUETTE,1
BEEF,1
CUCUMBER,2
EGG,1
FLOUR,2
GRAVY,0.01
OIL,0.5
POTATOES,2
SALT,0.01
STRAWBERRY,10
THYME,0.001

API Usage

Parasect also exposes an API for the compare and build commands,
that can be useful in project automation.
Their arguments are identical to their CLI counterparts.

See the API Reference for the full documentation.

Menu Creation

To fully utilize the capabilities of Parasect, you will need to specify certain information about your desired
autopilot configuration. This comes down to creating a folder structure that represents your Meals Menu.

Note

It is highly recommended that you read the Concepts section first and get acquainted with the
Restaurant Analogy that is used as nomenclature.

See also

You can find a generic example Meals Menu [https://github.com/AvyFly/parasect/tree/master/tests/assets/generic/menu] as well as an
PX4 example Meals Menu [https://github.com/AvyFly/parasect/tree/master/tests/assets/px4/menu], that are part of the unit tests of Parasect.
Refer to it while following this guide or use them as a starting point for your own use cases.

First, create your main Parasect input folder, which we’ll call menu for now (the actual folder name isn’t important).
You can place this folder anywhere in your system.
You will point Parasect to it later.

By the end of this guide, its tree will look something like this:

menu/
├── custom_dishes/
│ ├── bread.yaml
│ ├── coffee.yaml
│ ├── dairy.yaml
│ ├── desert.yaml
│ ├── extra_quantities.yaml
│ ├── fruit.yaml
│ ├── meat_and_potatoes.yaml
│ └── salad.yaml
├── meals.yaml
└── staple_dishes/
 ├── calibration.yaml
 ├── footer.yaml
 ├── header.yaml
 └── operator.yaml

Make two subfolders in it: custom_dishes and staple_dishes.

Filling in Staple Dishes

Each file contains all necessary information to create a Dish. A Dish is supposed to reflect one coherent set of parameters, for example related to PID gains, peripherals configuration,
Remote Controller configuration or the installed battery.

There are currently four Staple Dishes in Parasect: calibration.yaml, operator.yaml, header.yaml and
footer.yaml. They are reserved dishes that are used by Parasect in either the comparison or build functions.

calibration.yaml: This is a Dish that contains the names of the calibration parameters
of your autopilot. List those parameters here to: a) not take them into account when comparing parameter sets and b)
to remove them from generated parameter sets.
An example Calibration Dish follows:

common:
 ingredients:
 - [SALT, ~, Each has his own taste]

Notice how each list item is a triplet of items, representing a parameter.
The first value is the parameter name. The second is the parameter value. For the calibration Dish you do not need to specify a value, you can leave it as None (~).
Finally, the third item is a string, where you can document why you chose to include this parameter here. You can also set it to None (as ~).

Tip

Python regular expressions [https://docs.python.org/3/library/re.html] can be used to capture more than one parameter name per line, e.g.

common:
 ingredients:
 - [RC\d+_TRIM, ~, Disregard channel trim values]

operator.yaml: This is a Dish (with the usual Dish syntax) that contains the names of the operator parameters
of your autopilot. List those parameters here to: a) not take them into account when comparing parameter sets and b)
to remove them from generated parameter sets. You do not need to specify a value for a operator parameter either, leave it
as None (~).

Its syntax is the same as calibration.yaml.

Note

calibration.yaml and operator.yaml are the only Dish files that are used by the compare command.
If you only plan to use that and not build any parameter sets, then you can ignore the rest of this guide.

header.yaml and footer.yaml. These are files that don’t follow the usual Dish syntax. They contain the boilerplate
text that your autopilot may require of the generated parameter files.
The top-level dictionary does contain a Common section, that applies to all exported formats, but then alongside is a
formats section.

This reflects the available export Formats that Parasect offers (e.g. px4 parameters
and px4afv1 and px4afv2 for PX4 airframe files.)

Each named format then contains a common and variants section as usual, which you can refer to in your Meal.

An example header.yaml is:

common:
 - "# Parameter file exported by Parasect."

formats:
 csv:
 common:
 - "# Parameter name, Parameter value"
 px4:
 common:
 - "PX4-format header line 1\n"
 - "PX4-format header line 2\n"
 px4afv1:
 common:
 - "PX4-airframe-format header line 1\n"
 - "PX4-airframe-format header line 2\n"

Creating Custom Dishes

Next, you can create the Dishes that describe your parameter sets.
Within the custom_dishes folder, create as many Dish .yaml files as you want and name them as you like.

In each Dish file, start by defining your Common Ingredients as a list of triplets, just as in calibration.yaml and operator.yaml.
Each triplet refers to a single parameter and its contents are:

	The parameter name.

	The parameter value.

	A justification string, to remind you why you chose to fix this parameter and why selected this particular value. Can be set to None (~).

If you plan to generate only one Meal (a single parameter set), then put all your parameter definitions here.
Otherwise, put in the Common Ingredients only those parameters who are common across all of your Meals.

Then, define your Allergen Ingredients. These are parameters that you don’t want to exist in your generated parameter set.
They will be removed from the default parameters list, if you point to one as a basis of your Meal.
Some autopilot software group their parameters in parameter groups (e.g. PX4). This makes it easier to mark them as allergens as
a whole, by placing the group name in the Allergen Groups section of the Dish.

If you plan to use slightly different versions of your Dish across the different Meals, then add a Variants section in your Dish.
This is a dictionary where you can specialize your Dish with different Ingredients and Allergens for each Variant.

The contents of an example dish are:

common:
 ingredients:
 - [BEEF, 1, ~]
 - [POTATOES, 2, ~]
 - [THYME, 0.001, ~]
 - [GRAVY, 0.01, ~]
 allergens:
 substances:
 - [MUSHROOMS, ~, My stomach really can't handle them]
 groups:

variants:
 spicy:
 common:
 ingredients:
 - [CHILLI, 1, ~]
 variants:
 extra:
 common:
 ingredients:
 - [JALLAPENOS, 2, ~]

Note that it is possible to nest the Variants more than one level deep.

Creating your Menu

Now that your Dishes and their Variants are specified, you can bring it all together by designating Meals in your Menu.
Create a meals.yaml file in the top-level directory of your Menu folder. This is a dictionary from strings to dictionaries.

Each section represents a unique autopilot configuration and it starts with an arbitrary name.

Then, in each row you add Dishes to your Meal. The key is the Dish name and the value is the Dish Variant. Set the
value to None (~) to use only the Dish Common section. Refer to the nested Variants using a slash (/).

Example Meals Menu:

snack:
 fruit: single
 header: ~
 footer: ~

breakfast:
 dairy: cereal
 header: ~
 footer: ~

light_meal:
 salad: ~
 meat_and_potatoes: ~
 remove_calibration: True
 remove_operator: True
 header: ~
 footer: ~

spicy_meal:
 salad: ~
 meat_and_potatoes: spicy/extra
 remove_calibration: True
 remove_operator: True
 header: ~
 footer: ~

full_meal:
 salad: ~
 meat_and_potatoes: ~
 bread: baguette
 desert: ~
 header: ~
 footer: full_meal

christmass_at_grandmas:
 parent: full_meal
 salad: village
 extra_quantities: ~
 add_new: True

dangerous_combinations:
 parent: breakfast
 coffee: filter
 add_new: True

There are also some reserved, optional keywords for the Meal dictionary:

	defaults: Specifies a filepath where the default parameters file is found. If it is not absolute, then it is relative
to your menu folder. This option overrides the Parsect default parameters filepath configuration.

	sitl: Marks the Meal for Simulation-In-The-Loop (SITL) purposes. You can select to build SITL or non-SITL Meals
with the corresponding argument of the build API function.

	hitl: Marks the Meal for Hardware-In-The-Loop (HITL). In some output formats (e.g. PX4), this affects the output filename.

	parent: Adds a reference to another Meal, to be used as a parent for the current Meal. For more information see section Parent Meals.

	remove_calibration: Removes the Calibration Dish Ingredients from this Meal. Strongly recommended to be set to true.

	remove_operator: Removes the Operator Dish Ingredients from this Meal. Strongly recommended to be set to true.

	add_new: Allows the addition of Ingredients that are not stated in the default parameter set (or the parent,
if one is specified).

	frame_id: This is applicable to PX4 output formats. It sets the SYS_AUTOSTART parameter.

Parent Meals

Sometimes you want to specify a base Meal (parameter set) and then a bunch more that are basically identical
to that first one, except for very few changes.
One such example is wanting a basic parameter set and then additional vehicles with adjustments to the values of certain
parameters.
Another example is wanting additional Meal variations configuring a camera mount or a secondary radio.

Instead of re-specifying an identical Meal with the additional Dishes, you can specify the base Meal as the
parent of the new Meal and specify only the additional Dishes.

The Default Parameter set is not used for the child-Meals. The parameter set of the parent is used instead.
Editing the parent Ingredients is thus always possible, but to add new parameters that don’t exist in the parent Meal
you will need to also set add_new to true.

See also

Now that you have created your Meals Menu, find out how to point Parasect to it in Setting Paths.

Setting Paths

Parasect needs to know where certain files are to function:

	To ignore calibration or operator parameters in compare, it needs to know where the Meals Menu is, to find the corresponding staple Dishes.

	To build the Meals Menu, it needs to know its folder path.

	To build a Meals Menu using the default parameters file
of an autopilot, it also needs to know the path of the default parameters file.

In sum, there are two resources that the user might need to specify:

	The Meals Menu folder path.

	The filepath of the autopilot default parameters.

Pointing to the Meals Menu folder

By priority, pass the Meals Menu path in the --input_folder (-i)
option of compare or build.

Alternatively, with lower priority, you can set the environment variable PARASECT_PATH.

Pointing to the default parameters file

By priority, use the defaults reserved keyword in a Meal description, as described here.

Alternatively, with lower priority, pass the default parameters filepath in the --default_parameters (-d)
option of build.

Alternatively, with lower priority, you can set the environment variable PARASECT_DEFAULTS.

Usage Example with Ardupilot

This tutorial presents a use case of Parasect supporting the Ardupilot ecosystem.
Parasect can be effective in producing a parameter file that configures an Unmanned Vehicle (UA) completely.

This tutorial mainly targets:

	UA manufacturers, wishing to manage the parameter configuration of their fleet.

	Advanced users, looking for more fine-grained control of their parameter set.

Initial Tuning

Let’s imagine that we have built a custom multicopter of our own design and now we wish to configure the parameters of Ardupilot.
To that goal, let’s first obtain the default parameter set of the autopilot.
We connect via our favourite GCS, flash the autopilot with the appropriate airframe and then save the default parameter set, i.e. the parameters and their values as they where on the first boot.
It doesn’t matter much if this is done before or after the initial sensor calibration. For the purposes of this tutorial, let’s say we saved the file after calibration.

Let’s create a folder parasect_files and place those parameters in a file inside that, named defaults.params.
From now on our working folder will be parasect_files.

The file is going to look something like

ACRO_BAL_PITCH 1.000000
ACRO_BAL_ROLL 1.000000
ACRO_OPTIONS 0
ACRO_RP_EXPO 0.300000
ACRO_RP_RATE 360.000000
...
WPNAV_TER_MARGIN 10.000000
WP_NAVALT_MIN 0.000000
WP_YAW_BEHAVIOR 2
WVANE_ENABLE 0
ZIGZ_AUTO_ENABLE 0

Let’s start tuning our UAV.
We know that our UAV carries a 5000mAh battery (BATT_CAPACITY=5000) and we have calculated that we need about 1000mAh to land at our own pace (BATT_LOW_MAH=1000).

Then we fly a bit and tune the PID loops. We come up with the following changes:

LOIT_SPEED=1500
ATC_ANG_PIT_P=5.0
ATC_ANG_RLL_P=5.0
ATC_RATE_R_MAX=60
ATC_RATE_P_MAX=60

Finally, we choose that we purposely want the default behaviour regarding what
happens mission after a reboot (MIS_OPTIONS=0).

Let’s save the parameter file anew, naming it my_copter_post_tuning.params.
Parasect can compare the two parameter sets and highlight the differences:

> parasect compare defaults.param my_copter_post_tuning.param
File comparison : defaults.param | my_copter_post_tuning.param
==
--
Component 1-1:
--
ATC_ANG_PIT_P : 4.5 | 5
ATC_ANG_RLL_P : 4.5 | 5
ATC_RATE_R_MAX : 0 | 60
BARO1_GND_PRESS : 94502.5 | 101079.8
BARO2_GND_PRESS : 94502.5 | 101080.9
BATT_CAPACITY : 3300 | 5000
BATT_LOW_MAH : 0 | 1000
LOIT_SPEED : 1250 | 1500
STAT_RUNTIME : 0 | 123
==
9 parameters differ

The compare command of Parasect lists the differences between two parameter files.
The tuning changes we made are in there, so we can inspect and make sure that they ended up in our saved file.
But so are some that we didn’t actively change. STAT_RUNTIME is a parameter that constantly changes value so we don’t care seeing that in the differences list.
Additionally, calibration values such as BARO1_GND_PRESS and BARO2_GND_PRESS are also bound to change automatically and we don’t want to manually set them.

Our First Meal

Parasect can help us reproduce this parameter set systematically. For that, we set up a Menu folder with the following contents:

menu
├── custom_dishes
│ ├── battery.yaml
│ ├── mission.yaml
│ └── tuning.yaml
├── defaults.param
├── meals.yaml
└── staple_dishes
 ├── calibration.yaml
 └── header.yaml

First off, we copied our defaults.param file in the menu.
The rest of the menu is made up of .yaml files. Let’s see what each file contains. In custom_dishes we can name our files as we want, grouping parameters as we like.
For example:

battery.yaml

common:
 ingredients:
 - [BATT_CAPACITY, 5000, ~]
 - [BATT_LOW_MAH, 1000, Enough juice to RTL]

battery.yaml contains those parameters and their values related to the battery configuration. Each line is a triplet describing a) the parameter name, b) the parameter value and c) an optional reasoning of why this value was selected (reminder: the ~ symbol means None in yaml syntax).

Note

The common and ingredients keys are significant, but for now they will not be explained. You can read more in Menu Creation.

The contents of mission.yaml and tuning.yaml is similar:

mission.yaml

common:
 ingredients:
 - [MIS_OPTIONS, 0, The default behaviour is what I want]

tuning.yaml

common:
 ingredients:
 - [LOIT_SPEED, 1500, I like things a bit fast]
 - [ATC_ANG_PIT_P, 5, It can use a bit more oomph here]
 - [ATC_ANG_RLL_P, 5, It can use a bit more oomph here]
 - [ATC_RATE_R_MAX, 60, "It's a big bird, so let's take it slow"]
 - [ATC_RATE_P_MAX, 60, "It's a big bird, so let's take it slow"]

Let’s now take a look at the staple_dishes folder.
Its contents can only be specific yaml files.

In the header.yaml file we can put custom headers that will always be prepended in our files.
In this example, the header adds two comment lines.

header.yaml

formats:
 apm:
 common:
 - "# Maintainer: George Zogopoulos"
 variants:
 my_copter_1:
 common:
 - "# Parameter set for my_copter_1"

Finally, remember how calibration parameters would appear earlier in the parameter files comparison, making the results harder to read?
calibration.yaml gives us a chance to fix that.
Any parameter placed here will be ignored by compare.
Additionally, a regular expression [https://docs.python.org/3/library/re.html] can be used here to capture more than one parameter name per line.

calibration.yaml

common:
 ingredients:
 - [BARO._GND_PRESS, ~, ~]
 - [COMPASS_DIA_., ~, ~]
 - [RC\d+_MAX, ~, ~]
 - [RC\d+_MIN, ~, ~]
 - [RC\d+_TRIM, ~, ~]
 - [STAT_RUNTIME, ~, ~]

Finally, let’s define the meals.yaml file, that brings everything together:

meals.yaml

my_copter_1:
 defaults: defaults.param
 battery: ~
 tuning: ~
 mission: ~
 header: my_copter_1
 remove_calibration: true

In this file we ask Parasect to build a parameter file titled my_copter_1.param, using the common sections of battery.yaml, tuning.yaml and mission.yaml and the my_copter_1 section of header.yaml.
Additionally, we ask it to use calibration.yaml to remove the calibration parameters from the parameter set.
All of these parameter changes will be done on top of defaults.param. The path we passed to the defaults keyword is relative to the menu folder.

Let’s now use the compare command to build the file.

> parasect build -i menu -f apm -o my_parameters

The command points to the menu folder for build information.
The output format is of apm type and the file will be placed in a folder named my_parameters.

Let’s see the contents of my_parameters/my_copter_1.param.

Maintainer: George Zogopoulos
Parameter set for my_copter_1
ACRO_BAL_PITCH 1
ACRO_BAL_ROLL 1
ACRO_OPTIONS 0
...
WPNAV_TER_MARGIN 10
WP_NAVALT_MIN 0
WP_YAW_BEHAVIOR 2
WVANE_ENABLE 0
ZIGZ_AUTO_ENABLE 0

Let’s compare the produced file with the intended result.

❯ parasect compare my_parameters/my_copter_1.param my_copter_post_tuning.param
File comparison : my_copter_1.param | my_copter_post_tuning.param
==
--
Component 1-1:
--
BARO1_GND_PRESS : X < 101079.8
BARO2_GND_PRESS : X < 101080.9
BARO3_GND_PRESS : X < 0
COMPASS_DIA_X : X < 1
COMPASS_DIA_Y : X < 1
COMPASS_DIA_Z : X < 1
RC10_MAX : X < 1900
RC10_MIN : X < 1100
...
RC9_MIN : X < 1100
RC9_TRIM : X < 1500
STAT_RUNTIME : X < 123
==
55 parameters differ

55 Parameters are different! But all of them are calibration parameters, that don’t exist in my_copter_1.param, as we asked.
Still, they clutter the comparison. Let’s use the -s option to ignore them.

Note

We still need to point to the menu folder to let Parasect know where calibration.yaml is, but that can be circumvented by permanently setting the Parasect path, as described in Setting Paths.

❯ parasect compare -i menu -s my_parameters/my_copter_1.param my_copter_post_tuning.param
File comparison : my_copter_1.param | my_copter_post_tuning.param
==
==
0 parameters differ

Great! The produced parameter file is exactly as we wanted it!
We can write it in our UAV as many times as we want to reset the parameters to their intended values, without fear of overwritign the calibration!

Another UAV Variant

We now decide to build another, slightly different airframe, named my_copter_2.
This one will be identical to the previous one, but it will carry a smaller battery.
We adapt battery.yaml and header.yaml accordingly.

Since my_copter_2 has a different BATT_CAPACITY than my_copter_1 but the same BATT_LOW_MAH, we split the battery definition into a common part and individual variants.

battery.yaml

common:
 ingredients:
 - [BATT_LOW_MAH, 1000, Enough juice to RTL]

variants:
 my_copter_1:
 common:
 ingredients:
 - [BATT_CAPACITY, 5000, ~]
 my_copter_2:
 common:
 ingredients:
 - [BATT_CAPACITY, 3000, ~]

While we are at it, we also want to define some parameters as operator parameters.
They will be treated the same as calibration parameters, by being removed from the parameter file and we can ignore them in comparisons.
This will allow our friend to change them at any time as he pleases to suit his operation better.

To that goat, we add an operator.yaml file.

operator.yaml

common:
 ingredients:
 - [RTL_ALT, ~, ~]
 - [RTL_CONE_SLOPE, ~, ~]
 - [RTL_LOIT_TIME, ~, ~]
 - [FLTMODE., ~, ~]

Finally, we edit the meals.yaml file to strip the operator parameters too.

meals.yaml

my_copter_1:
 defaults: defaults.param
 battery: my_copter_1
 tuning: ~
 mission: ~
 header: my_copter_1
 remove_calibration: true
 remove_operator: true

my_copter_2:
 defaults: defaults.param
 battery: my_copter_2
 tuning: ~
 mission: ~
 header: my_copter_2
 remove_calibration: true
 remove_operator: true

Let’s build the files anew and compare them.

> parasect build -i menu -f apm -o my_parameters
> parasect compare my_parameters/my_copter_1.param my_parameters/my_copter_2.param
File comparison : my_copter_1.param | my_copter_2.param
==
--
Component 1-1:
--
BATT_CAPACITY : 5000 | 3000
==
1 parameters differ

Excellent! That’s just what we wanted!

Let’s give this new airframe to a friend! He needs a platform to brush up his flyig skills.

Read-Only Parameters

Oh no! Our friend came back saying that his drone crashed! He says that suddenly, as the battery got low it fell out of the sky.
First things first, let’s compare the ideal parameter file from the actual one, as our friend gave it to us (called friend_dump.param).

> parasect compare -i menu -s my_parameters/my_copter_2.param friend_dump.param
File comparison : my_copter_2.param | friend_dump.param
==
--
Component 1-1:
--
BATT_FS_CRT_ACT : 0 | 5
==
1 parameters differ

Oh dear… he had set the critical battery failsafe action to Terminate, inadvertently causing the crash.
We will repair his UAV, but let’s make sure that doesn’t happen again, by making the BATT_FS_CRT_ACT parameter read-only
and use the appropriate workflow involving the apj-tool [https://ardupilot.org/dev/docs/apjtools-intro.html] to bake in its default read-only value.

We add it in the mission.yaml file and mark it accordingly.

mission.yaml

common:
 ingredients:
 - [MIS_OPTIONS, 0, The default behaviour is what I want]
 - [BATT_FS_CRT_ACT, 4, Do the best thing possible apart from crashing @READONLY]

Parasect can scan the reasoning section for the keyword @READONLY and add it in the parameter file.
But .param files containing the @READONLY flag cause errors when they are loaded in normal GCSs, like MAVProxy.
Thus, the .param file to be used by the apj_tool.py will be exported as a different format: apj.

We can build only that meal with the desired format

> parasect build -i menu -f apj -c my_copter_2 -o my_parameters

and then inspect the resulting file.

my_copter_2.param

...
BATT_CRT_VOLT 0
BATT_CURR_PIN 12
BATT_FS_CRT_ACT 4 @READONLY
BATT_FS_LOW_ACT 0
BATT_FS_VOLTSRC 0
...

That’s just what we need.

Now, to bake the read-only status in the firmware, we need to use the apj_tool [https://ardupilot.org/dev/docs/apjtools-intro.html].
Unfortunately, apj_tool can fit only 8 kilobytes of parameters in the .apj file, whilst our file is a lot larger.

> du -h my_parameters/my_copter_2.param
24K my_parameters/my_copter_2.param

We have to make a concession and strip our parameter file from the default parameters.
The downside is that we can no longer use the same parameter file with our GCS to reset all the parameters to the intended value.
But we can easily circumvent this issue by simply creating a parameter file exclusively for this use, and explicity setting defaults to None.

meals.yaml

...

my_copter_2:
 defaults: defaults.param
 battery: my_copter_2
 tuning: ~
 mission: ~
 header: my_copter_2
 remove_calibration: true
 remove_operator: true

my_copter_2_apj:
 defaults: ~
 battery: my_copter_2
 tuning: ~
 mission: ~
 header: my_copter_2
 remove_calibration: true
 remove_operator: true
 add_new: true

Note how we have added the add_new: true entry in the new meal.
This is necessary, because Parasect by default does not allow creating new parameters in a set, to prevent typographical errors.
However, in this case we indeed want to start on an empty slate, without a default parameter set, so we have to explicitly allow new parameter names.

The resulting parameter set is, as expected:

my_copter_2_apj.param

Maintainer: George Zogopoulos
Parameter set for my_copter_2
ATC_ANGLE_BOOST 1
ATC_ANG_PIT_P 5
ATC_ANG_RLL_P 5
ATC_RATE_P_MAX 60
ATC_RATE_R_MAX 60
BATT_CAPACITY 3000
BATT_FS_CRT_ACT 4 @READONLY
BATT_LOW_MAH 1000
LOIT_SPEED 1500
MIS_OPTIONS 0

We can now bake in the parameters in our .apj file with the apj_tool [https://ardupilot.org/dev/docs/apjtools-intro.html].
We assume that arducopter.apj and apj_tool.py has been copied into parasect_files.

> python3 apj_tool.py --set-file my_parameters/my_copter_2_apj.param arducopter.apj
Loaded apj file of length 1809920
Found param defaults max_length=8192 length=282
Setting defaults from my_parameters/my_copter_2_apj.param
Saved apj of length 1809920

Success!

Conclusion

This tutorial taught you how to use Parasect to compare and create your own parameter sets.
Now go forth and don’t ever let mixed parameters ruin your day ever again!

Concepts

The Restaurant Analogy

Parasect employs a restaurant analogy to encode its functionality.

When you interact with Parasect, you define a Menu of Meals that Parasect can prepare for you.

The Menu contains multiple Meals. Each Meal represents a distinct parameter set,
a configuration that should be unique and reflect a unique unmanned vehicle.
The Menu is defined in the meals.yaml file where each Meal is named and represented by a dictionary.

Example meals.yaml file:

snack:
 fruit: single
 header: ~
 footer: ~

breakfast:
 dairy: cereal
 header: ~
 footer: ~

light_meal:
 salad: ~
 meat_and_potatoes: ~
 remove_calibration: True
 remove_operator: True
 header: ~
 footer: ~

spicy_meal:
 salad: ~
 meat_and_potatoes: spicy/extra
 remove_calibration: True
 remove_operator: True
 header: ~
 footer: ~

full_meal:
 salad: ~
 meat_and_potatoes: ~
 bread: baguette
 desert: ~
 header: ~
 footer: full_meal

christmass_at_grandmas:
 parent: full_meal
 salad: village
 extra_quantities: ~
 add_new: True

dangerous_combinations:
 parent: breakfast
 coffee: filter
 add_new: True

The Meal is made up of Dishes. Each Dish represents a notional subset of the autopilot’s parameters, which makes it
easier to define and manage.
In this case light_meal contains the Dishes salad, meat_and_potatoes, header and footer.
The rest of the key-value pairs will be explained later.

Each Dish is defined in a separate file and contains a common Recipe, which specifies which Ingredients make up the Dish, as well as a list
of Allergens that should not exist in the Dish.

Furthermore, one or more Dish Variants can be specified in the Dish file, which are specializations of the common Recipe.
They define more Ingredients and more Allergens. The Variants can be infinitely nested.

In the Meal dictionary, the Dish names are defined in the dictionary key, while the dictionary value specifies the Dish
Variant that should be used for that meal.
If no Variant is specified (the value is set to ~, i.e. None) then the common Recipe is used.
On the contrary, a value of variant_1/subvariant_a signifies that the Meals needs to be specialized with Variant Recipes.

Example: salad Dish file:

common:
 ingredients:
 - [CUCUMBER, 2, ~]
 - [OIL, 0.5, ~]
 - [SALT, 0.01, ~]
 allergens:
 substances:
 - [VINEGAR, ~, Mom doesn't like it]

variants:
 village:
 common:
 ingredients:
 - [TOMATO, 3, ~]
 - [WHITE_CHEESE, 0.5, ~]

The user is free to create as many Custom Dishes he wants under the custom_dishes folder and then refer to them
in meals.yaml. Not all Meals need to refer to all available Dishes.
However, there are Staple Dishes that serve special purposes and are defined in the staple_dishes folder;
their filenames are significant and should not be altered. Still the user is expected to fill in their content.

Such Dishes are:

	calibration.yaml: The calibration parameters can be defined there.

	operator.yaml: The operator parameters can be defined there.

	header.yaml: The header text of the generated parameter files can be defined there.

	footer.yaml: The footer text of the generated parameter files can be defined there.

Menu Folder Structure

In the end, your meals menu folder will have the following structure:

menu/
├── custom_dishes/
│ ├── dish_1.yaml
│ ├── dish_2.yaml
├── staple_dishes/
│ ├── calibration.yaml
│ ├── header.yaml
│ ├── footer.yaml
│ ├── operator.yaml
└── meals.yaml

Functional Requirements

Parasect builds parameter sets while satisfying and enforcing these requirements:

	If a Default Parameters set is provided, it will form the basis of the Meal Ingredients.
These default parameters are often autogenerated by the autopilot toolchain.

Why?: It is highly recommended to build upon a default parameters set, because you can thus enforce the default value
in all of the parameters you don’t wish to alter.

	If you provide a default parameters set, it is an illegal operation to define and set an Ingredient that doesn’t exist in it.

Why?: This is to catch spelling mistakes in the parameter names. However, this functionality can be disabled to
enable specific workflows.

	The Variant Recipes should not re-define an Ingredient that their parent Common Recipe already defined.

Why?: This is to make it easier to trace which part of the Dish file ends up in the Meal. If you need a Dish Variant
to alter the value of an Ingredient found in the Common Dish, you can create another Variant and define your Ingredients there.

	Each Ingredient should be set at most once across all Dishes:

Why?: Remember that in the end, the whole Meal is exported as a flat list of parameters. You don’t want the same
parameter being defined more than once.

These requirements allow the parameter set generated by Parasect to be idempotent:

	You can apply it on your autopilot and be sure that it is configured exactly to your intent.

	You can reapply it as many times as you wish, without affecting the existing calibration or the operator configuration.

You can also compare it to the current autopilot parameter set. The calibration and operator parameters can be ignored
so only meaningful changes will surface.

It is recommended, but not enforced to:

	Define calibration parameters as Ingredients in the calibration.yaml Dish and remove them from the Meal, using the remove_calibration flag.

Why?: Each vehicle has its own unique calibration. Overwriting this calibration values is not appropriate.

	Define operation-related parameters as Ingredients in the operator.yaml Dish and remove them from the Meal, using the remove_operator flag.

Why?: Each operator should have the freedom to choose the values of certain parameters. Overwriting them is not appropriate.

Reference

CLI Reference

parasect

Main CLI entry point.

parasect [OPTIONS] COMMAND [ARGS]...

Options

	
--debug

	Generate log file.

	
--version

	Show the version and exit.

build

Build command.

parasect build [OPTIONS]

Options

	
-o, --output_folder <output_folder>

	Specify the output folder.

	
-c, --configuration <config>

	Specify a single Meal to build.

	
-f, --format <format>

	Select autopilot format. Read the documentation of Formats for more information.

	Options:

	csv | px4 | px4afv1 | px4afv2 | apm | apj

	
-i, --input_folder <input_folder>

	Specify the folder from which to read configurations and parameters.

	
-d, --default_parameters <default_parameters>

	Specify the default parameters file to apply to all Meals.

compare

Compare command.

parasect compare [OPTIONS] FILE_1 FILE_2

Options

	
-i, --input_folder <input_folder>

	The directory where the Meals Menu is created, containing at least the calibration and operator staple dishes. Necessary when the nocal and noop options are set.

	
-s, --suppress-calibration

	Don’t compare calibration parameters.

	
-u, --suppress-operator-defined

	Don’t compare operator-selectable parameters.

	
-c, --component <component>

	Compare the parameters of a specific component. Refers to MAVLink-type Component IDs.

Arguments

	
FILE_1

	Required argument

	
FILE_2

	Required argument

API Reference

Parasect package.

	
class parasect.Formats(value)

	Supported output formats.

	
apj = 'apj'

	File compatible with Ardupilot’s apj tool.

	
apm = 'apm'

	Ardupilot-compatible file.

	
csv = 'csv'

	Simple parameter name, value .csv file.

	
px4 = 'px4'

	QGroundControl-style parameter file.

	
px4afv1 = 'px4afv1'

	Legacy PX4 airframe file, prior to version 1.11.

	
px4afv2 = 'px4afv2'

	New PX4 airframe file, version 1.11 and later.

	
parasect.build(meal_ordered, format, input_folder, default_params, output_folder=None, sitl=False)

	Build parameter sets.

	Parameters:

	
	meal_ordered (str | None) – Specify which meal should be built. All meals specified in the menu will be built if left None.

	format (Formats) – The autopilot format to export as.

	input_folder (str | None) – The directory where the Meals Menu is created.

	default_params (str | None) – If set, this file will provide the full parameters set for all the Meals.

	output_folder (str | None) – The directory where the meals will be exported.

	sitl (bool) – Filter for Meals marked as “sitl”.
None: Disregard this meal keyword.
True: Only build “sitl” meals.
False: Don’t build “sitl” meals.

	Raises:

	ValueError – If meal_ordered is None (hence all the meals will be exported) but no output_folder is specified.

	Return type:

	None

	
parasect.compare(file_1, file_2, input_folder, nocal, noop, component)

	Compare two parameter files.

	Parameters:

	
	file_1 (str) – The path to the first parameter file to compare.

	file_2 (str) – The path to the second parameter file to compare.

	input_folder (str | None) – Necessary when the nocal and noop options are set.
The directory where the Meals Menu is created, containing at least the calibration and operator staple dishes.

	nocal (bool) – Don’t compare the calibration parameters.

	noop (bool) – Don’t compare the operator parameters.

	component (int | None) – Compare the parameters of a specific component. Refers to MAVLink-type Component IDs.

	Returns:

	A string with the comparison table contents.

	Return type:

	str

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/AvyFly/parasect]

	Documentation [https://parasect.readthedocs.io/]

	Issue Tracker [https://github.com/AvyFly/parasect/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/AvyFly/parasect/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/AvyFly/parasect/issues].

How to set up your development environment

First of all, clone the Parasect repository.

Then, you need Python 3.8+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

	nox-poetry [https://nox-poetry.readthedocs.io/]

Install Poetry [https://python-poetry.org/] by downloading and running the following script:

$ curl -sSL https://install.python-poetry.org | python3 -

Install Nox [https://nox.thea.codes/] and nox-poetry [https://nox-poetry.readthedocs.io/]:

$ pipx install nox
$ pipx inject nox nox-poetry

Navigate into the location where you cloned Parasect and install the package with development requirements:

$ poetry install

You can now run an interactive Poetry shell, giving you access to the virtual environment.

$ poetry shell

How to test the project

The Parasect CLI offers debug output in the form of a parasect.log file.
The file can be created by issuing the --debug flag when calling Parasect.

$ parasect --debug <rest_of_the_arguments>

Additionally, you can run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/AvyFly/parasect/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. You must provide tests covering 100% (or as close as possible) of your code changes and additions.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early. Mark your PR as WIP (Work in Progress) in the PR title, to signal that it is not in its final form yet.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install

If you are unsure how your contribution would fit in Parasect, feel free to raise an issue for discussion.
It is always preferable to spend a little time discussing your approach, instead of spending a lot of effort on a large chunk of code that might be rejected.

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our community include:

	Demonstrating empathy and kindness toward other people.

	Being respectful of differing opinions, viewpoints, and experiences.

	Giving and gracefully accepting constructive feedback.

	Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience.

	Focusing on what is best not just for us as individuals, but for the overall community.

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind.

	Trolling, insulting or derogatory comments, and personal or political attacks.

	Public or private harassment.

	Publishing others’ private information, such as a physical or email
address, without their explicit permission.

	Other conduct which could reasonably be considered inappropriate in a
professional setting.

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at geo.zogop.papal@gmail.com. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 2.0,
available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

MIT License

Copyright © 2022-2023 Avy B.V.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

The software is provided “as is”, without warranty of any kind, express or
implied, including but not limited to the warranties of merchantability,
fitness for a particular purpose and noninfringement. In no event shall the
authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from,
out of or in connection with the software or the use or other dealings in the
software.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 parasect	

Index

 Symbols
 | A
 | B
 | C
 | E
 | F
 | M
 | P

Symbols

 	
 	
 --component

 	parasect-compare command line option

 	
 --configuration

 	parasect-build command line option

 	
 --debug

 	parasect command line option

 	
 --default_parameters

 	parasect-build command line option

 	
 --format

 	parasect-build command line option

 	
 --input_folder

 	parasect-build command line option

 	parasect-compare command line option

 	
 --output_folder

 	parasect-build command line option

 	
 --suppress-calibration

 	parasect-compare command line option

 	
 --suppress-operator-defined

 	parasect-compare command line option

 	
 	
 --version

 	parasect command line option

 	
 -c

 	parasect-build command line option

 	parasect-compare command line option

 	
 -d

 	parasect-build command line option

 	
 -f

 	parasect-build command line option

 	
 -i

 	parasect-build command line option

 	parasect-compare command line option

 	
 -o

 	parasect-build command line option

 	
 -s

 	parasect-compare command line option

 	
 -u

 	parasect-compare command line option

A

 	
 	apj (parasect.Formats attribute)

 	
 	apm (parasect.Formats attribute)

B

 	
 	build() (in module parasect)

C

 	
 	compare() (in module parasect)

 	
 	csv (parasect.Formats attribute)

E

 	
 	
 environment variable

 	PARASECT_DEFAULTS

 	PARASECT_PATH

F

 	
 	
 FILE_1

 	parasect-compare command line option

 	
 	
 FILE_2

 	parasect-compare command line option

 	Formats (class in parasect)

M

 	
 	
 module

 	parasect

P

 	
 	
 parasect

 	module

 	
 parasect command line option

 	--debug

 	--version

 	
 parasect-build command line option

 	--configuration

 	--default_parameters

 	--format

 	--input_folder

 	--output_folder

 	-c

 	-d

 	-f

 	-i

 	-o

 	
 	
 parasect-compare command line option

 	--component

 	--input_folder

 	--suppress-calibration

 	--suppress-operator-defined

 	-c

 	-i

 	-s

 	-u

 	FILE_1

 	FILE_2

 	PARASECT_DEFAULTS

 	PARASECT_PATH

 	px4 (parasect.Formats attribute)

 	px4afv1 (parasect.Formats attribute)

 	px4afv2 (parasect.Formats attribute)

 nav.xhtml

 Table of Contents

 		
 Parasect

_static/file.png

_static/minus.png

_static/plus.png

